• 文献标题:   Phonon-mediated superconductivity in graphene by lithium deposition
  • 文献类型:   Article
  • 作  者:   PROFETA G, CALANDRA M, MAURI F
  • 作者关键词:  
  • 出版物名称:   NATURE PHYSICS
  • ISSN:   1745-2473 EI 1745-2481
  • 通讯作者地址:   Univ Aquila
  • 被引频次:   251
  • DOI:   10.1038/NPHYS2181
  • 出版年:   2012

▎ 摘  要

Graphene(1) is the physical realization of many fundamental concepts and phenomena in solid-state physics(2). However, in the list of graphene's many remarkable properties(3-6), superconductivity is notably absent. If it were possible to find a way to induce superconductivity, it could improve the performance and enable more efficient integration of a variety of promising device concepts including nanoscale superconducting quantum interference devices, single-electron superconductor-quantum dot devices(7,8), nanometre-scale superconducting transistors(9) and cryogenic solid-state coolers(10). To this end, we explore the possibility of inducing superconductivity in a graphene sheet by doping its surface with alkaline metal adatoms, in a manner analogous to which superconductivity is induced in graphite intercalated compounds(11,12) (GICs). As for GICs, we find that the electrical characteristics of graphene are sensitive to the species of adatom used. However, contrary to what happens in GICs, Li-covered graphene is superconducting at a much higher temperature with respect to Ca-covered graphene.