• 文献标题:   Synthesis and Electrochemical Performances of Fe2O3-MWCNTs/Reduced Graphene Hybrid Nanostructures for Highly Sensitive Hydrazine Detection
  • 文献类型:   Article
  • 作  者:   CHEN L, HONG C, WANG WD, YU ZC, LI PW, LI G, SHI J, HU J, CHEN Y
  • 作者关键词:  
  • 出版物名称:   JOURNAL OF THE ELECTROCHEMICAL SOCIETY
  • ISSN:   0013-4651 EI 1945-7111
  • 通讯作者地址:   Sorbonne Univ
  • 被引频次:   0
  • DOI:   10.1149/2.0531915jes
  • 出版年:   2019

▎ 摘  要

Fe2O3 nanorods, multi-walled carbon nanotubes (MWCNTs) and reduced graphene nanosheets (rGO) have been assembled to form Fe2O3-MWCNTs/rGO hybrid nanostructures for high sensitivity detection of hydrazine. Hydrolysis reaction and annealing were firstly used to grow Fe2O3 nanorods on MWCNTs, resulting in high density Fe2O3 nanorods with a typical diameter of 300 nm and lengths in the range from 100 nm to 200 nm. The electrochemical properties of Fe2O3-MWCNTs/rGO nanostructures were then investigated and both cyclic voltammetry (CV) and amperometry showed that Fe2O3-MWCNTs/rGO hybrid nanostructures can be used for hydrazine detection, due to their high sensitivity (4.1 mu A.mu M-1.cm(-2)), short response time (3 s), low detection limit (0.048 mu M with a S/N = 3) and good linear detection range (0.3 mu M-350 mu M). Moreover, they also present high selectivity, long-term stability and reproducibility. These characteristics can be attributed to the superimposed catalytic effect and larger specific surface area of the Fe2O3-MWCNTs/rGO hybrid nanostructures, which make them promising for high-performance electrochemical sensing. (C) 2019 The Electrochemical Society.