• 文献标题:   Compression Limit of Two-Dimensional Water Constrained in Graphene Nanocapillaries
  • 文献类型:   Article
  • 作  者:   ZHU YB, WANG FC, BAI JI, ZENG XC, WU HA
  • 作者关键词:   constrained water, compression limit, graphene, 2d water ice, metastability phase diagram
  • 出版物名称:   ACS NANO
  • ISSN:   1936-0851 EI 1936-086X
  • 通讯作者地址:   Univ Nebraska
  • 被引频次:   43
  • DOI:   10.1021/acsnano.5b06572
  • 出版年:   2015

▎ 摘  要

Evaluation of the tensile/compression limit of a solid under conditions of tension or compression is often performed to provide mechanical properties that are critical for structure design and assessment. Algara-Siller et al. recently demonstrated that when water is constrained between two sheets of graphene, it becomes a two-dimensional (2D) liquid and then is turned into an intriguing monolayer solid with a square pattern under high lateral pressure [Nature, 2015, 519, 443-445]. From a mechanics point of view, this liquid-to-solid transformation characterizes the compression limit (or metastability limit) of the 2D monolayer water. Here, we perform a simulation study of the compression limit of 2D monolayer, bilayer, and trilayer water constrained in graphene nanocapillaries. At 300 K, a myriad of 2D ice polymorphs (both crystalline-like and amorphous) are formed from the liquid water at different widths of the nanocapillaries, ranging from 6.0 to 11.6 angstrom. For monolayer water, the compression limit is typically a few hundred MPa, while for the bilayer and trilayer water, the compression limit is 1.5 GPa or higher, reflecting the ultrahigh van der Waals pressure within the graphene nanocapillaries. The compression-limit (phase) diagram is obtained at the nanocapillary width versus pressure (h-P) plane, based on the comprehensive molecular dynamics simulations at numerous thermodynamic states as well as on the Clapeyron equation. Interestingly, the compression-limit curves exhibit multiple local minima.