• 文献标题:   Functional materials from the covalent modification of reduced graphene oxide and beta-cyclodextrin as a drug delivery carrier
  • 文献类型:   Article
  • 作  者:   WEI GC, DONG RH, WANG D, FENG L, DONG SL, SONG AX, HAO JC
  • 作者关键词:  
  • 出版物名称:   NEW JOURNAL OF CHEMISTRY
  • ISSN:   1144-0546 EI 1369-9261
  • 通讯作者地址:   Shandong Univ
  • 被引频次:   20
  • DOI:   10.1039/c3nj00690e
  • 出版年:   2014

▎ 摘  要

We report a drug delivery system based on the covalently reduced graphene oxide (rGO) with p-aminobenzoic acid (rGO-C6H4-COOH) for the loading and targeted delivery of the anticancer drug, doxorubicin (DOX). The colloidal solution of rGO-C6H4-COOH conjugated by polyethyleneimine (PEI) and Biotin was prepared. This endows the colloidal solution of rGO-C6H4-CO-NH-PEI-NH-CO-Biotin, which presents excellent water-solubility and targeting as a drug delivery system. [beta-Cyclodextrin (beta-CD) molecules, which are host molecules for accommodating guest molecules, such as water insoluble anticancer drugs, were introduced to reduce the cytotoxicity of the drug delivery system and to improve the biocompatibility. The drug delivery of rGO-C6H4-CO-NH-PEI-NH-CO-CD-Biotin has a similar to 24.64% drug (DOX) loading ratio. The drug release behavior was pH dependent at higher DOX concentrations, but salt dependent at lower DOX concentrations, which could be exploited for controlled drug release in cancer cells. The DOX loaded on rGO-C6H4-CO-NH-PEI-NH-CO-CD-Biotin could effectively induce HepG2 cancer cell apoptosis. This can be explained by the conjugation of DOX and rGO-C6H4-CO-NH-PEI-NH-CO-CD-Biotin being able to arrest the cancer cells in the G2 phase, which is the most sensitive to the anticancer drug.