• 文献标题:   Enhanced stretchable graphene-based triboelectric nanogenerator via control of surface nanostructure
  • 文献类型:   Article
  • 作  者:   CHEN HM, XU Y, ZHANG JS, WU WT, SONG GF
  • 作者关键词:   triboelectric nanogenerator, crumpled graphene, flexible, work function, nanostructure
  • 出版物名称:   NANO ENERGY
  • ISSN:   2211-2855 EI 2211-3282
  • 通讯作者地址:   Chinese Acad Sci
  • 被引频次:   19
  • DOI:   10.1016/j.nanoen.2019.01.029
  • 出版年:   2019

▎ 摘  要

Triboelectric nanogenerator (TENG), as a promising energy source, has attracted widespread attention for wearable applications due to its outstanding characteristics. Many approaches have been applied to improve the output performance. However, as an important development tendency, the stretchability and power density of stretchable TENG are far away from practical application. In this study, we developed a performance-enhanced stretchable TENG based stretchable crumpled graphene (CG). The CG-based TENG could generate output performance of 83.0 V and 25.78 mu A. While the power density is 0.25 mW/cm(2), which is 20 times over that of planar graphene-based TENG. It was found that the output performance was proportional to the crumple degree. The remarkable enhancement is contributed to not only the enhanced effective contact area and surface roughness, but larger work function difference. This discovery provides a novel and simple physical method to control the work function of two-dimensional material. The stretchable TENG could withstand large strain up to 120%, while the output performance was quite stable. It could harvest energy under various complex deformation encountered in practical wearable situations. This work investigated the effect of crumple nanostructure on the performance of TENG and demonstrated a performance-enhanced highly stretchable TENG, which proves a potential approach to developing practical stretchable TENG for wearable applications.