• 文献标题:   Multiple CO2 capture in stable metal-doped graphene: a theoretical trend study
  • 文献类型:   Article
  • 作  者:   TAWFIK SA, CUI XY, RINGER SP, STAMPFL C
  • 作者关键词:  
  • 出版物名称:   RSC ADVANCES
  • ISSN:   2046-2069
  • 通讯作者地址:   Univ Sydney
  • 被引频次:   16
  • DOI:   10.1039/c5ra09876a
  • 出版年:   2015

▎ 摘  要

Identifying stable systems with high CO2 adsorption capacity is an essential goal in CO2 capture and storage technologies. We have carried out a comprehensive first-principles study to explore the CO2 capture capacity of 16 representative metal-doped graphene systems where the metal dopants can be stabilized by single- and double-vacancies. The maximum number of adsorbed CO2 molecules was determined by a combination of adsorption energy and bond distance criteria. Generally, while the double-vacancy can bind metal dopants more strongly than the single-vacancy, single-vacancy graphene with metal dopants are better sorbents, with each Ca, Sc and Y dopant binding up to 5 CO2 molecules. CO2 capture involves significant charge transfer between the CO2 molecule and the dopant-vacancy complexes, where defective graphene acts as a charge reservoir for binding CO2 molecules. Some systems are predicted to involve the formation of a bent CO2 anion. Ca-doped single-and double-vacancy graphene systems, however, readily form oxides upon reaction with CO2, thus they are less reusable for CO2 capture.