▎ 摘 要
We illustrate Kerr and Faraday rotation in the strained-graphene by applying the second quantization method as an alternative approach. We consider the right- and left-going photon fields coupling with strained graphene. In other words, we have a new stationary state solution describing this phenomenon. A single-photon polarization in the provided state is considered in cases of a non-magnetic field, and uniform strained graphene. We show that the optical 1 properties of Faraday rotation, reflectance, and transmittance depend on the spinor phase and the energy level of an electron in strained graphene. These values can be controlled by variation of a strain parameter and strain types. Then, it is possible to have an alternative measurement of the pseudo-spin state and electronic structure in the 2-D layer by observing the optical properties of the single-photon in the provided state. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement