▎ 摘 要
Advanced metallurgical processing techniques are required to produce aluminum matrix composites due to the tendency of the reinforcement particles to agglomerate. In this study, graphene nano-platelet reinforcement particles were effectively incorporated into an automotive A319 aluminum alloy matrix using a liquid metallurgical route. Due to its low density, it is a highly difficult task to produce an aluminum matrix composite reinforced with graphene. Hence, this study explored a novel approach to prevent particle floating to the melt surface and agglomeration. This was achieved via a hybrid semi-solid stirring of A319, followed by ultrasonic treatment of the liquid melt using a sonication probe. The microstructure and graphene particles were characterized using optical microscopy and scanning electron microscopy. Furthermore, the interfacial products produced with the incorporation of graphene in liquid aluminum were analyzed with X-ray diffraction. The tensile test results exhibited 10, 11 and 32% improvements in ultimate tensile strength, yield strength, and ductility of A319 reinforced with 0.05 wt.% addition of graphene. Analysis of strengthening models demonstrated primary contribution from Hall-Petch followed by CTE mismatch and load bearing mechanism. The results from this research enable the potential for using cost-effective, efficient and simple liquid metallurgy methods to produce aluminum reinforced graphene composites with improved mechanical properties.