▎ 摘 要
In the present research, imperfect graphene sheets were generated and their vibrational property was studied via finite element analysis. The effect of vacant sites in the arrangement of these nano-structures was examined. The fundamental frequency of the defect free and imperfect nano-sheets was acquired based on two different approaches. The first approach was a pure finite element simulation. The second approach for comparison purpose was a recently reported refined finite element simulation at which the vicinity of a defect was first evaluated according to the density functional theory (DFT) and then the refined geometry was implemented into a finite element model. The findings of this research show that the fundamental frequency of graphene sheets decreases by presenting microscopic imperfection to the formation of these nano-materials. In addition, it was pointed out that the geometry based on the more precise DFT simulations gives a higher decrease in the fundamental frequency of the sheets for all considered cases.