▎ 摘 要
Impurities on surfaces experience a geometric symmetry breaking induced not only by the on-site crystal-field splitting and the orbital-dependent hybridization, but also by different screening of the Coulomb interaction in different directions. We present a many-body study of the Anderson impurity model representing a Co adatom on graphene, taking into account all anisotropies of the effective Coulomb interaction, which we obtained by the constrained random-phase approximation. The most pronounced differences are naturally displayed by the many-body self-energy projected onto the single-particle states. For the solution of the Anderson impurity model and analytical continuation of the Matsubara data, we employed new implementations of the continuous-time hybridization expansion quantum Monte Carlo and the stochastic optimization method, and we verified the results in parallel with the exact diagonalization method.