▎ 摘 要
In this letter, a double-active-layer (Zr:SiOx/C:SiOx) resistive switching memory device with a high ON/OFF resistance ratio and small working current (0.02 mA), is presented. Through the analysis of Raman and Fourier transform infrared spectroscopy spectra, we find that graphene oxide exists in the C:SiOx layer. It can be observed that Zr:SiOx/C: SiOx structure has superior switching performance and higher stability compared with the single-active-layer (Zr:SiOx) structure, which is attributed to the existence of graphene oxide flakes formed during the sputter process. I-V characteristics under a series of increasing temperature were analyzed to testify the carrier hopping distance variation, which is further verified by our graphene oxide redox reaction model.