▎ 摘 要
A new type of polydopamine functionalized graphene oxide/carboxymethyl chitosan (DGO/CMC) composite aerogels was synthesized via sol-gel once-forming self-assembly and lyophilization. Polydopamine (PDA) on the surface of GO nanosheets replaced those traditional crosslinking agents to connect CMC chains via hydrogen bonding for the establishment of 3D porous aerogels. With the increasing proportion of CMC, the microstructure of aerogels changed from small pores to large plate-bridge-like pores. In addition, their maximum compressive strengths were 6.767, 11.94, and 16.98 MPa under 90% compressions, respectively, which increased in accordance with CMC content. Furthermore, the adsorption system of the aerogels was simulated well by the pseudo second-order kinetic model and the Langmuir isotherm model, with maximum mass adsorption capacities of 170.3, 186.8, and 312.8 mg/g for Cu2+, Ni2+, and Pb(2+)ions, respectively. These composite materials have potential applications for water purification because of their simple and efficient synthesis and excellent recyclability and reusability.