• 文献标题:   Heavily N-doped monolayer graphene electrodes used for high-performance N-channel polymeric thin film transistors
  • 文献类型:   Article
  • 作  者:   ZHOU GQ, PAN GX, WEI LZ, LI T, ZHANG FP
  • 作者关键词:  
  • 出版物名称:   RSC ADVANCES
  • ISSN:   2046-2069
  • 通讯作者地址:   Chinese Acad Sci
  • 被引频次:   3
  • DOI:   10.1039/c6ra20496a
  • 出版年:   2016

▎ 摘  要

Recently graphene attracted much attention as a promising electrode material for organic field effect transistors (OFETs). However the electrodes used in most of the graphene-based OFETs were prepared from pristine graphene which suffers from relatively low conductivity and poor controlling of work function. In this work, we report the N-doping by Cs2CO3 of the CVD-grown single-layer graphene (SLG) via a facial spin-coating process. The Cs2CO3-engineered SLGs exhibit a heavy and stable N-doping, as well as significantly decreased work function (3.9 eV) compared to pristine graphene. The doped graphene was used as the source/drain electrodes in the bottom-contact top-gated OFETs based on a good electron transporter poly{[N, N'-bis(2-octyldodecyl)-1,4,5,8-naphthalenedicarboximide-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)} (P(NDI2OD-T2)). The polymeric FETs show an enhancement of electron mobility by a factor of 10, as well as a reduction of contact resistance compared to the devices using pristine graphene. It is attributed to a remarkable lowering of electron injection barrier at the polymer/graphene electrode due to the decreased work function of graphene. In addition, the microstructural observations reveal that the face-on molecular packing and morphological feature do not change for the P(NDI2OD-T2) films coated on the doped graphene electrodes compared to those on the SiO2 dielectric, in spite of a highly hydrophobic surface of the graphene.