▎ 摘 要
Accurate prediction of the electronic properties of zigzag graphene nanoribbons (ZGNRs) has been very challenging for conventional electronic structure methods due to the presence of strong static correlation effects. To meet the challenge, we study the single-triplet energy gaps, vertical ionization potentials, vertical electron affinities, fundamental gaps, and symmetrized von Neumann entropy (i.e., a measure of polyradical character) of hydrogen-terminated ZGNRs with different widths and lengths using our recently developed thermally-assisted-occupation density functional theory (TAO-DFT) [Chai, J.-D. J. Chem. Phys. 2012, 136, 154104], a very efficient method for the study of large strongly correlated systems. Our results are in good agreement with the available experimental and high-accuracy ab initio data. The ground states of ZGNRs are shown to be singlets for all the widths and lengths investigated. With the increase of ribbon length, the single-triplet energy gaps, vertical ionization potentials, and fundamental gaps decrease monotonically, while the vertical electron affinities and symmetrized von Neumann entropy increase monotonically. On the basis of the calculated orbitals and their occupation numbers, the longer ZGNRs are shown to possess increasing polyradical character in their ground states, where the active orbitals are mainly localized at the zigzag edges.