▎ 摘 要
This study investigates the use of graphene oxides (GOs) and carbon nanotubes (CNTs) embedded in polyacrylonitrile-based carbon nanofibers (GO-CNT/CNF) as electrodes for the supercapacitor. GO-CNT/CNF was prepared by electrospinning, and was subsequently stabilized and activated. The specific capacitance of GO-CNT/CNF is 120.5 F g(-1) in 0.5 M Na2SO4 electrolyte, which is higher than or comparable to the specific capacitances of carbon-based materials in neutral aqueous electrolyte, as prepared in this study. GO-CNT/CNF also exhibits a superior cycling stability, and 109% of the initial specific capacitance after 5000 cycles. The high capacitance of GO-CNT/CNF could be attributed to the edge planes and the functional groups of GO, the highly electrical conductivity of CNT, and the network structure of the electrode. (C) 2015 Elsevier Ltd. All rights reserved.