• 文献标题:   Direct growth of large-area graphene and boron nitride heterostructures by a co-segregation method
  • 文献类型:   Article
  • 作  者:   ZHANG CH, ZHAO SL, JIN CH, KOH AL, ZHOU Y, XU WG, LI QC, XIONG QH, PENG HL, LIU ZF
  • 作者关键词:  
  • 出版物名称:   NATURE COMMUNICATIONS
  • ISSN:   2041-1723
  • 通讯作者地址:   Peking Univ
  • 被引频次:   128
  • DOI:   10.1038/ncomms7519
  • 出版年:   2015

▎ 摘  要

Graphene/hexagonal boron nitride (h-BN) vertical heterostructures have recently revealed unusual physical properties and new phenomena, such as commensurate-incommensurate transition and fractional quantum hall states featured with Hofstadter's butterfly. Graphene-based devices on h-BN substrate also exhibit high performance owing to the atomically flat surface of h-BN and its lack of charged impurities. To have a clean interface between the graphene and h-BN for better device performance, direct growth of large-area graphene/h-BN heterostructures is of great importance. Here we report the direct growth of large-area graphene/h-BN vertical heterostructures by a co-segregation method. By one-step annealing sandwiched growth substrates (Ni(C)/(B, N)-source/Ni) in vacuum, wafer-scale graphene/h-BN films can be directly formed on the metal surface. The as-grown vertically stacked graphene/h-BN structures are demonstrated by various morphology and spectroscopic characterizations. This co-segregation approach opens up a new pathway for large-batch production of graphene/h-BN heterostructures and would also be extended to the synthesis of other van der Waals heterostructures.