▎ 摘 要
In this article, an economical, efficient, and unfussy nanocomposite sensor was equipped for the analysis of powerful antioxidant rutin (RTN). Due to the synergetic effect with more surface-active cites, cetrimonium bromide (CMB) was decorated on the surface of nanocomposite of graphene nano-platelets (GNPs) and carbon (CB) paste to attribute a superior electro-catalytic nature for RTN detection in phosphate buffer (PB) as a supporting electrolyte. The proposed CMB functionalized GNPs-CB composite paste electrode (CMB/GNPs-CBCPE) declining the material resistance and overpotential with rising the kinetic rate, peak currents, and material conductance towards the RTN detection. In the optimal experimental conditions, the analyzing efficiency of CMB/ GNPs-CBCPE was examined using the linear sweep voltammetry (LSV), cyclic voltammetry (CV), and differential pulse voltammetry (DPV) with a finer linear relation andthe corresponding limit of detection (LOD) values are found to be 0.041 mu M, 0.023 mu M, and 0.0027 mu M, respectively. The effect of some organic molecules and some metal ions on RTN detection at CMB/GNPs-CBCPE was studied with acceptable results. The sensitivity, selectivity, steadiness, repeatability, and reproducibility of the modified sensor were studied with decent results. The practicability of CMB/GNPs-CBCPE was verified by analyzing RTN in blood serum, urine, green tea, tomato, apple juice, and medicinal samples with adequate recoveries.