• 文献标题:   Using a Graphene-Polyelectrolyte Complex Reducing Agent To Promote Cracking in Single-Crystalline Gold Nanoplates
  • 文献类型:   Article
  • 作  者:   LI XM, ZHANG YH, FU M, TANG YH, YIN S, MA ZQ, DAI H, LI HT, GAO H, RUSSELL TP, AN Q
  • 作者关键词:   graphene oxide, polymer, gold nanoplate, sers, seira
  • 出版物名称:   ACS APPLIED MATERIALS INTERFACES
  • ISSN:   1944-8244 EI 1944-8252
  • 通讯作者地址:   China Univ Geosci
  • 被引频次:   1
  • DOI:   10.1021/acsami.9b16500
  • 出版年:   2019

▎ 摘  要

It is a challenge to produce single-crystalline gold nanoparticles having regular size definition designed for controlled light absorbance and internal structural inhomogeneities to enhance electro-magnetic fields. Here, we report a synthetic strategy to generate large single-crystalline triangular or hexagonal gold nanoplates with multiple cracks within the plates using a graphene-polyelectrolyte complex as both a surface adsorbent and bulk reducing agent. Large-scale gold nanoplates can be synthesized within 48 h. First-principles calculations indicate that the nanoplates have a kinetically limited morphology resulting from prior growth of {111} facets confined by the graphene-polyelectrolyte multilayer. The nanocracks result from the inability of the bulk reducing agent to enter narrow defect spaces during growth that remained permanently. The nanoplates had extraordinary physical-chemical detection sensitivity when used for surface-enhanced Raman scattering (SERS) and surface-enhanced infrared absorption (SEIRA). The limit of rhodamine 6G (Rh6G) SERS detection is as low as 5 x 10(-13) M. The gold nanoplates also showed a remarkable light-to-heat conversion efficiency (68.5%). The approach described may be applicable to other metals so that tunable nanostructures can be generated by the graphene-polyelectrolyte multilayer strategy.