▎ 摘 要
We present a comprehensive theory of the Dyakonov-Shur (DS) plasma instability in current-biased graphene transistors. Using the hydrodynamic approach, we derive equations describing the DS instability in the two-dimensional electron fluid in graphene at arbitrary values of electron drift velocity. These nonlinear equations together with Maxwell's equations are used for numerical analysis of the spatial and temporal evolution of the graphene electron system after the DS instability is triggered by random current fluctuations. We analyze conditions necessary for the onset of the DS instability and the properties of the final stationary state of the graphene electron system. We demonstrate that the instability results in the coherent anharmonic oscillatory state of the electron fluid and calculate both the spatial distribution and the power of the electromagnetic radiation generated by the graphene transistor in the DS instability regime.