• 文献标题:   Multiple functional base-induced highly ordered graphene aerogels
  • 文献类型:   Article
  • 作  者:   DAI DF, ZHOU Y, XIAO WQ, HAO ZL, ZHANG H, WANG J, CAI JM
  • 作者关键词:  
  • 出版物名称:   JOURNAL OF MATERIALS CHEMISTRY C
  • ISSN:   2050-7526 EI 2050-7534
  • 通讯作者地址:  
  • 被引频次:   1
  • DOI:   10.1039/d1tc01985f EA JUN 2021
  • 出版年:   2021

▎ 摘  要

Graphene aerogels with aligned and continuous channels are of great significance in the fields of mechanical engineering, energy storage and environmental remediation. However, due to the lack of a microstructure to control pores, graphene aerogels have poor mechanical properties, poor adsorption properties and low practicality. Here, we have developed a base-induced method for easily obtaining highly ordered graphene aerogels (HOGAs) with excellent properties. The HOGA demonstrates a high compressive strength of 32 kPa under the strain of 70%. What's more, after a huge compressive strain of 95% repeated 10 times, the maximum stress and height remain unchanged. Owing to the ultra-high elasticity, excellent mechanical properties and stable force-electrical conversion characteristics, the HOGA is used to prepare a stress/strain sensor, which can substitute for sensing human movement and distinguish different walking postures. In addition, the HOGA possesses an ultra-fast adsorption rate (83 g g(-1) s(-1)) for organic solvents making it an ideal candidate for environmental remediation.