• 文献标题:   pH-responsive nanosystems based on reduced graphene oxide grafted with polycaprolactone-block-poly(succinyloxyethylmethacrylate) for doxorubicin release
  • 文献类型:   Article
  • 作  者:   MASSOUMI B, SARVARI R, KHANIZADEH L, AGBOLAGHI S, BEYGIKHOSROWSHAHI Y
  • 作者关键词:   drug delivery, reduced graphene oxide, pcl, phema, doxorubicin
  • 出版物名称:   JOURNAL OF THE IRANIAN CHEMICAL SOCIETY
  • ISSN:   1735-207X EI 1735-2428
  • 通讯作者地址:   Payame Noor Univ
  • 被引频次:   0
  • DOI:   10.1007/s13738-019-01675-6
  • 出版年:   2019

▎ 摘  要

pH-responsive nanocarriers were synthesized via polycaprolactone-b-poly(succinyloxyethylmethacrylate) copolymers grafted onto reduced graphene oxide (rGO-g-PCL-b-PSEMA) for anticancer drug delivery applications. For this propose, epsilon-caprolactone monomer was polymerized from -OH groups of rGO with ring-opening polymerization (ROP) to obtain polycaprolactone grafts (rGO-g-PCL). In the next step, 2-hydroxyethylmethacrylate monomer was polymerized from PCL end through atom transfer radical polymerization to afford rGO-g-PCL-b-poly(hydroxyethylmethacrylate) (PHEMA). The pH-responsive rGO-g-PCL-b-PSEMA was obtained by reacting rGO-g-PCL-b-PHEMA with excess succinic anhydride in pyridine under mild conditions. The pH sensitivity of nanosystems was confirmed via dynamic light scattering at pH values of 4 and 7.4. Doxorubicin encapsulation efficacy was calculated to be 92%. The effect of pH on release behaviors of rGO-g-PCL-b-PSEMA nanocarriers was investigated. The release rates at pH values of 7.4, 5.4 and 4 were about 52.1, 64.2 and 68.63 wt% after 775 min and at 37 degrees C. The release rate was improved at tumor simulated environment (42 degrees C and pH