▎ 摘 要
Because of its special chemical composition, graphite oxide has peculiar influences on electrochemical processes. The existence of various functional groups significantly affects electropolymerization processes and the formation of conductive polymers. Electrochemical synthesis of polyaniline (as a prototype of conductive polymers) on a paste-based substrate of graphite oxide was investigated. In this case, the electropolymerization is significantly different from conventional cases, and the polymer is generated just during the first potential cycle. This can be attributed to the fact that graphite oxide can assist the monomer oxidation. Alternatively, electropolymerization was successfully performed inside the graphite oxide layers via electrochemical treatment of aniline-intercalated graphite oxide in the supporting electrolyte. Although these phenomena are related to the chemical composition of graphite oxide, the graphite prepared by the reduction of graphite oxide also displayed some advantages for the electropolymerization (over natural graphite). There is an emphasis on the morphological investigations throughout this study, because novel morphologies were observed in the system under investigation. (C) 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2204-2213, 2010