▎ 摘 要
A systematic molecular dynamics simulation study is performed to assess the effects of temperature and free edges on the ultimate tensile strength and Young's modulus of a single-layer graphene sheet. It is observed that graphene sheets at higher temperatures fail at lower strains, due to the high kinetic energy of atoms. A numerical model, based on kinetic analysis, is used to predict the ultimate strength of the graphene under various temperatures and strain rates. As the width of a graphene reduces, the excess edge energy associated with free edge atoms induces an initial strain on the relaxed configuration of the sheets. This initial strain has a greater influence on the Young's modulus of the zigzag sheet compared with that of the armchair sheets. The simulations reveal that the carbon-carbon bond length and amplitude of intrinsic ripples of the graphene increases with temperature. The initial out-of-plane displacement of carbon atoms is necessary to simulate the physical behaviour of a graphene when the Nose-Hoover or Berendsen thermostat is used.