• 文献标题:   Nickel Cobalt Hydroxide @Reduced Graphene Oxide Hybrid Nanolayers for High Performance Asymmetric Supercapacitors with Remarkable Cycling Stability
  • 文献类型:   Article
  • 作  者:   MA HN, HE J, XIONG DB, WU JS, LI QQ, DRAVID V, ZHAO YF
  • 作者关键词:   ultrathin, nanolayer, nico hydroxide, supercapacitor, cycling stability
  • 出版物名称:   ACS APPLIED MATERIALS INTERFACES
  • ISSN:   1944-8244 EI 1944-8252
  • 通讯作者地址:   Yanshan Univ
  • 被引频次:   191
  • DOI:   10.1021/acsami.5b10280
  • 出版年:   2016

▎ 摘  要

Nanolayered structures present significantly enhanced electrochemical performance by facilitating the surface -dependent electrochemical reaction processes for super capacitors, which, however, causes capacitance fade upon cycling due to their poor chemical stability. In this work, we report a simple and effective approach to develop a stable, high performance electrode material by integrating 2D transition metal hydroxide and reduced graphene oxide sheets at nanometer scale. Specifically, a hybrid nanolayer of Ni-Co hydroxide @reduced graphene oxide (Ni,Co OH/rGO) with an average thickness of 1.37 nm is synthesized through an easy one -pot hydrothermal method. Benefiting from the face to face contact model between Ni-Co hydroxide and rGO sheets, such unique structure presents superior specific capacitance and cycling performance as compared to the pure Ni-Co hydroxide nanolayers. An asymmetric supercapacitor based on Ni,Co-OH/rGO and three-dimensional (3D) hierarchical porous carbon is developed, exhibiting a high energy density of 56.1 Wh kg(-1) along with remarkable cycling stability (80% retention after 17 000 cycles), which holds great promise for practical applications in energy storage devices.