• 文献标题:   Microporous Layer Containing CeO2-Doped 3D Graphene Foam for Proton Exchange Membrane Fuel Cells at Varying Operating Conditions
  • 文献类型:   Article
  • 作  者:   CHEN L, LIN R, YU XT, ZHENG T, DONG MC, LOU MY, MA YY, HAO ZX
  • 作者关键词:   pemfc, interfacial mass transfer, microporous layer, cerium oxide, water management efficiency
  • 出版物名称:   ACS APPLIED MATERIALS INTERFACES
  • ISSN:   1944-8244 EI 1944-8252
  • 通讯作者地址:  
  • 被引频次:   7
  • DOI:   10.1021/acsami.1c03699 EA APR 2021
  • 出版年:   2021

▎ 摘  要

To improve the interfacial mass-transfer efficiency, microporous layers (MPLs) containing CeO2 nanorods and the CeO2 nano-network were prepared for proton exchange membrane fuel cells (PEMFCs). In order to minimize the contact resistance, the three-dimensional (3D) graphene foam (3D-GF) was used as the carrier for the deposition of CeO2 nanorods and the nano-network. The CeO2-doped 3D-GF anchored at the interface between the catalyst layer and microporous layer manufactured several novel functional protrusions. To evaluate the electrochemical property, the normal MPL, the MPL containing raw 3D-GF, and MPLs containing different kinds of CeO2-doped 3D-GF were used to assemble the membrane electrode assemblies (MEAs). Measurements show that the CeO2-doped 3D-GF improved the reaction kinetics of the cathode effectively. In addition, the hydrophilic CeO2-doped 3D-GF worked as the water receiver to prevent the dehydration of MEAs at dry operating condition. Besides, at a high current density or humid operating condition, the CeO2-doped 3D-GF provided the pathway for water removal. Compared with the CeO2 nanorods, the CeO2 nano-network on 3D-GF revealed a higher adaptability at varying operating conditions. Hence, such composition and structure design of MPL is a promising strategy for the optimization of high-performance PEMFCs.