▎ 摘 要
Reverse electrodialysis is a promising method to harvest the osmotic energy stored between seawater and freshwater, but it has been a long-standing challenge to fabricate permselective membranes with the power density surpassing the industry benchmark of 5.0 W m(-2) for half a century. Herein, a vertically transported graphene oxide (V-GO) with the combination of high ion selectivity and ultrafast ion permeation is reported, whose permeation is three orders of magnitude higher than the extensively studied horizontally transported GO (H-GO). By mixing artificial seawater and river water, an unprecedented high output power density of 10.6 W m(-2) is obtained, outperforming all existing materials. Molecular dynamics (MD) simulations reveal the mechanism of the ultrafast transport in V-GO results from the quick entering of ions and the large accessible area as well as the apparent short diffusion paths in V-GO. These results will facilitate the practical application of osmotic energy and bring an innovative design strategy for various systems involving ultrafast transport, such as filtration and catalysis.