▎ 摘 要
Since microRNA-205 (miRNA-205) is a predictive biomarker for antiradiation of nasopharyngeal carcinoma (NPC), quantitative detection of miRNA-205 is important for developing personalized strategies for the treatment of NPC. In this investigation, based on the graphene oxide (GO) sensor and hybridization chain reaction (HCR) for fluorescence signal amplification, a highly sensitive and selective detection method for miRNA-205 was designed. A target-recycling mechanism is employed, where a single miRNA-205 target triggers the signal amplification of many DNA signal probes. The biosensor shows the ability to analyze miRNA-205 in solution, and it can detect miRNA-205 at concentrations as low as 311.96 pM. Furthermore, the method is specific in that it distinguishes between a target miRNA and a sequence with single-, double-, and three-base mismatches, as well as other miRNAs. Considering its simplicity and superior sensitivity, it was also verified in 1 parts per thousand serum with a detection limit of 111.65 pM. Importantly, the method successfully demonstrated that miRNA-205 could be imaged in living cells, which provided the possibility of localizing target molecules in live cell imaging applications. This method has great clinical application potential in the determination of miRNA-205, a biomarker for radiation-resistant NPC.