• 文献标题:   Investigation of 6-armchair graphene nanoribbon tunnel FETs
  • 文献类型:   Article
  • 作  者:   AHMADCHALLY AA, GHOLIPOUR M
  • 作者关键词:   armchair graphene nanoribbon agnr, bandtoband tunneling btbt, tunnel fet tfet
  • 出版物名称:   JOURNAL OF COMPUTATIONAL ELECTRONICS
  • ISSN:   1569-8025 EI 1572-8137
  • 通讯作者地址:  
  • 被引频次:   3
  • DOI:   10.1007/s10825-021-01709-4 EA MAY 2021
  • 出版年:   2021

▎ 摘  要

A simulation-based study of an n-type six-dimer-line armchair graphene nanoribbon (6-AGNR) tunnel field-effect transistor with asymmetric reservoir doping density is carried out. Tunnel field-effect transistor (TFET) structures are proposed based on a detailed investigation of the device behavior for different applied voltages, channel lengths, temperatures, insulator thicknesses, dielectric constants, and source impurity molar fractions. By suppressing the tunneling transmission in the off-state, the channel length of the device using HfO2 can be scaled down to 5 nm without increasing the leakage current. When using a supply voltage of 0.4 V, the I-ON/I-OFF ratio reaches a high value of 3.6 x 10(10) for the device with a 5-nm channel. Besides, a subthreshold swing (SS) of 3.8 mV/dec is measured for the same GNR-TFET. The high-performance 10-nm-channel device, when supplied with 0.6 V, exhibits a boosted I-ON value of up to 4.3 x 10(3) mu A/mu m, with SS, g(m), and D-ini values of 28 mV/dec, 11 mu S, and 11 fs, respectively. Nevertheless, conventional GNR-TFETs with various channel lengths exhibit rather outstanding characteristics. Such 6-AGNR TFETs display promising functionality for application in future digital and analog integrated circuits.