▎ 摘 要
N-aminobutyl-N-ethylisoluminol and horseradish peroxidase bifunctionalized graphene oxide hybrids (ABEI-GO@HRP) were prepared through a facile and green strategy for the first time. The hybrids exhibited excellent chemiluminescence (CL) activity over a wide range of pH from 6.1 to 13.0 when reacted with H2O2, whereas ABEI functionalized GO had no CL emission at neutral pH and showed more than 2 orders of magnitude lower CL than ABEI-GO@HRP Such CL intensity at pH 13.0. strong emission from ABEI-GO@HRP was probably due to that HRP and GO facilitated the formation of O-2 is approximately equal to, -CO4 center dot 2-, HO center dot, and pi-C=C-center dot in the CL reaction, and GO as a reaction interface promoted the electron transfer of the radical-involved reaction. By virtue of ABEI-GO@HRP as a platform, an ultrasensitive, selective, and reagentless CL sensor was developed for H2O2 detection. The CL sensor exhibited a detection limit of 47 fM at physiological pH, which was more than 2 orders of magnitude lower than previously reported methods. This work reveals that bifunctionalization of GO by ABEI and HRP leads to excellent CL feature and enzyme selectivity, which can be used as an ideal platform for developing novel analytical methods.