• 文献标题:   SnS@C nanoparticles anchored on graphene oxide as high-performance anode materials for lithium-ion batteries
  • 文献类型:   Article
  • 作  者:   MEI J, HAN JL, WU FJ, PAN QC, ZHENG FH, JIANG JT, HUANG YG, WANG HQ, LIU K, LI QY
  • 作者关键词:   sns, ndoped carbon, graphene oxide, anode, lithiumion batterie
  • 出版物名称:   FRONTIERS IN CHEMISTRY
  • ISSN:   2296-2646
  • 通讯作者地址:  
  • 被引频次:   0
  • DOI:   10.3389/fchem.2022.1105997
  • 出版年:   2023

▎ 摘  要

Tin (II) sulfide (SnS) has been regarded as an attractive anode material for lithium-ion batteries (LIBs) owing to its high theoretical capacity. However, sulfide undergoes significant volume change during lithiation/delithiation, leading to rapid capacity degradation, which severely hinders its further practical application in lithium-ion batteries. Here, we report a simple and effective method for the synthesis of SnS@C/G composites, where SnS@C nanoparticles are strongly coupled onto the graphene oxide nanosheets through dopamine-derived carbon species. In such a designed architecture, the SnS@C/G composites show various advantages including buffering the volume expansion of Sn, suppressing the coarsening of Sn, and dissolving Li2S during the cyclic lithiation/delithiation process by graphene oxide and N-doped carbon. As a result, the SnS@C/G composite exhibits outstanding rate performance as an anode material for lithium-ion batteries with a capacity of up to 434 mAh g(-1) at a current density of 5.0 A g(-1) and excellent cycle stability with a capacity retention of 839 mAh g(-1) at 1.0 A g(-1) after 450 cycles.