▎ 摘 要
Due to the advantages of large specific surface area, high mass transfer efficiency and easy access to active sites, two dimensional (2D) nanomaterials provide a great opportunity for the construction of new versatile electro-catalysts with superior properties. Herein, a graphene-templated growth of MoS2-Ni3S2 heterostructure with porous structure is successfully prepared on the Ni foam (MoS2/Ni3S2@G/NF) by one pot hydrothermal method. The electronic structure and surface properties of 2D chalcogenides are modified by heterogeneous interface and component engineering, so as to prepare a high-performance transition metal composite catalytic electrode for electrochemical reaction. The optimized MoS2/Ni3S2 @G/NF shows excellent bifunctional activity and durability in alkaline medium. It only needs 53 mV and 265 mV overpotential to reach 10 mA cm-2 current density of HER and 20 mA cm-2 current density for OER, respectively. When the composite is used as an advanced electro-catalyst for water splitting, the 1.47 V voltage required to achieve a current density of 10 mA cm-2, which is better than the most non-noble metal electrocatalysts. The heterostructures between MoS2, Ni3S2 and graphene are conducive to the synchronous chemical adsorption of hydrogen and oxygen-containing intermediates, which can improve the catalytic activity of overall water splitting.