▎ 摘 要
A simple and novel approach for the preparation of a Pt/reduced graphene oxide nanoscroll (Pt/RGOS) nanocatalyst is reported for the first time. The Pt/reduced graphene oxide (Pt/RGO) was fabricated by the co-reduction of GO and Pt salt using ethylene glycol under microwave irradiation, then the Pt/RGOSs were obtained by oxygen implosion in situ rolling up of the Pt/RGO using catalytic decomposition of Pt towards H2O2 under ultrasonication. Transmission electron microscopy shows that the Pt nanoparticles are uniformly dispersed on the reduced graphene oxide nanoscrolls with tubular structure, open edges and ends, and tubular diameter ranging from 10 to 100 nm. X-ray diffraction indicates that the crystal structure and diffraction intensity of the platinum practically remains unchanged, and the RGO has not been oxidized before or after rolling. Raman spectroscopy reveals that the Pt/RGOSs have a higher D/G ratio (1.2) than Pt/RGO (1.1). BET (Brunauer, Emmett and Teller) results exhibit that the Pt/RGOSs possess higher specific surface area and broader pore size range (188 m(2) g(-1), 25-45 nm) than Pt/RGO (122 m(2) g(-1), 30-38 nm). Additionally, the electrocatalytic performance of the Pt/RGOSs for methanol oxidation was evaluated, and the results show that the Pt/RGOSs possess significantly higher electrocatalytic activity and stability than Pt/RGO.