• 文献标题:   Few-layered graphene reinforced Al-10 wt% Si-2 wt% Cu matrix composites
  • 文献类型:   Article
  • 作  者:   SENYURT B, KUCUKELYAS B, BELLEK M, KAVAK S, BORAND G, UZUNSOY D, AGAOGULLARI D, AKCAMLI N
  • 作者关键词:   fewlayered graphene, alsicu matrix composite, mechanical alloying, mechanical propertie, wear corrosion resistance
  • 出版物名称:   JOURNAL OF MATERIALS RESEARCH TECHNOLOGYJMR T
  • ISSN:   2238-7854 EI 2214-0697
  • 通讯作者地址:  
  • 被引频次:   3
  • DOI:   10.1016/j.jmrt.2022.09.049 EA SEP 2022
  • 出版年:   2022

▎ 摘  要

Few-layered graphene (FLG) reinforced Al-10 wt% Si-2 wt% Cu (Al10Si2Cu) matrix com-posites were fabricated via a powder metallurgical route. FLG powders were produced in an originally designed DC arc reactor via arc discharge method. Al, Si, Cu and FLG powders were subjected to high-energy ball milling at different durations to produce ternary Al alloy with homogeneously dispersed FLG, and bulk composites were fabricated via subsequent uni-axial compaction and pressureless sintering. The effects of varying FLG amounts and milling duration on the properties of the powder and bulk samples were investigated. The characterization of as-blended and mechanically alloyed (MAed) powders and their sin-tered forms were performed in terms of microstructural, thermal, mechanical, wear and corrosion properties. According to the results, the hardness values of the 4 h MAed Al10Si2Cu-xFLG composites were determined as 102, 154, 191 and 241 HV for x 1/4 0, 1, 2 and 5 wt%, respectively. Despite the greater hardness value of the Al10Si2Cu-5FLG-4h com-posite, its compressive strength was low due to its brittle structure. The highest compressive strength was shown by the Al10Si2Cu-1FLG as 463 MPa by an approximate increase of 53% compared to that of the Al10Si2Cu matrix. Moreover, the tribology tests showed that FLG addition (up to 2 wt%) improved the wear rate of the Al10Si2Cu matrix. However, a deteriorative effect of FLG on the corrosion resistance of the composites was determined.(c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).