▎ 摘 要
The conductivity describing magnetophonon resonances is calculated in monolayer graphene, with the Fermi level located near the Dirac point. Intervalley scattering due to zone-edge phonons gives dominant contribution to the conductivity compared to intravalley scattering due to zone-center optical phonons mainly because of lower frequency. Resonances are classified into three types, i.e., principal, symmetric, and asymmetric transitions. The magnetophonon oscillations due to the principal and symmetric transitions are periodic in inverse magnetic field, while those due to the asymmetric transitions are not precisely periodic. The amplitude of the oscillation is shown to be weakly dependent on magnetic field.