• 文献标题:   Enhanced thermoelectric performance of Bi0.5Sb1.5Te3-expanded graphene composites by simultaneous modulation of electronic and thermal carrier transport
  • 文献类型:   Article
  • 作  者:   SUH D, LEE S, MUN H, PARK SH, LEE KH, KIM SW, CHOI JY, BAIK S
  • 作者关键词:   bismuth antimony telluride, graphene, thermoelectric, composite, solvothermal synthesi
  • 出版物名称:   NANO ENERGY
  • ISSN:   2211-2855 EI 2211-3282
  • 通讯作者地址:   Sungkyunkwan Univ
  • 被引频次:   34
  • DOI:   10.1016/j.nanoen.2015.02.001
  • 出版年:   2015

▎ 摘  要

Solution-based synthesis of thermoelectric nanoplates, which provides a low thermal conductivity due to the grain boundary scattering, has received considerable attention as a scalable method. However, the scattering also decreased electrical conductivity leading to a low thermoelectric figure of merit (ZT). Here we employed expanded graphene to enhance thermoelectric performance of p-type Bi0.5Sb1.5Te3 composites by simultaneous improvement in electrical conduction and phonon scattering. The addition of expanded graphene (0.1 vol%) improved both carrier concentration and electrical conductivity of composites due to the high intrinsic p-type carrier concentration of graphene. Besides, it significantly decreased lattice thermal conductivity due to the phase boundary phonon scattering in spite of the high intrinsic thermal conductivity of graphene. The increased carrier concentration also suppressed the bipolar conduction resulting in a moderate increase in power factor and a slow increase in bipolar thermal conductivity at elevated temperatures. Overall, the maximum ZT increased by 45% (1.13 at 360 K) by the addition of expanded graphene. A similar trend with a greater maximum ZT (1.24 at 360 K) was observed when ball-milled Bi0.5Sb1.5Te3 ingot powders were employed providing reliability of the suggested mechanism. (C) 2015 Elsevier Ltd. All rights reserved.