• 文献标题:   Graphene-based TiO2 composites for photocatalysis & environmental remediation: synthesis and progress
  • 文献类型:   Review
  • 作  者:   PURABGOLA A, MAYILSWAMY N, KANDASUBRAMANIAN B
  • 作者关键词:   titanium dioxide, graphene nanomaterial, photocatalysi, synthetic dye, wastewater treatment, liion batterie
  • 出版物名称:   ENVIRONMENTAL SCIENCE POLLUTION RESEARCH
  • ISSN:   0944-1344 EI 1614-7499
  • 通讯作者地址:  
  • 被引频次:   18
  • DOI:   10.1007/s11356-022-18983-9 EA FEB 2022
  • 出版年:   2022

▎ 摘  要

Photoactive nanomaterials constitute an emerging field in nanotechnology, finding an extensive array of applications spanning diverse areas, including electronics and photovoltaic devices, solar fuel cells, wastewater treatment, etc. Titanium dioxide (TiO2), in its thin-film form, has been exhaustively surveyed as potential photocatalysts for environmental remediation owing to its innocuousness, stability, and photocatalytic characteristics when subjected to ultraviolet (UV) irradiation. However, TiO2 has some shortcomings associated with a large bandgap value of around 3.2 eV, making it less efficient in the visible spectral range. TiO2 is often consolidated with various carbon nanomaterials to overcome this limitation and enhance its efficiency. Graphene, a 2-dimensional allotrope of carbon with a bandgap tuned between 0 and 0.25 eV, exhibits unique properties, making it an attractive candidate to augment the photoactivity of semiconductor (SC) oxides. Encapsulating graphene oxide onto TiO2 nanospheres demonstrates intensified photocatalytic properties and exceptional recyclability for the degeneration of certain dyes, including Rhodamine B. This review encompasses various techniques to synthesize graphene-based TiO2 photoactive composites, emphasizing graphene capsulized hollow titania nanospheres, nanofibers, core/shell, and reduced graphene oxide-TiO2-based nanocomposites. It also consolidates the application of the aforestated nanocomposites for the disintegration of various synthetic dyes, proving efficacious for water decontamination and degradation of chemicals and pharmaceuticals. Furthermore, graphene-based TiO2 nanocomposites used as lithium (Li)-ion batteries manifesting substantial electrochemical performance and solar fuel cells for energy production are discussed here.