▎ 摘 要
A facile and sensitive electrochemiluminescence (ECL) immunosensor for the detection of human carcinoembryonic antigen (CEA) was designed. The immunosensor used Pt nanoparticles dotted graphene-carbon nanotubes composites (Pt/Gr-CNTs) as a platform and carbon dots functionalized Pt/Fe nanoparticles (Pt/Fe@CDs) as bionanolabels. The Pt/Gr-CNTs was first synthesized using a facile ultrasonic method to modify the working electrode, which increases the surface area to capture a large amount of primary anti-CEA antibodies as well as improving the electronic transmission rate. The bionanolabels Pt/Fe@CDs prepared through ethanediamine linking, showed good ECL signal amplification performance. The reason is that the Pt/Fe@CDs nanocomposites as signal tags can increase CDs loading per immunoreaction in comparison with single CDs. The approach provided a good linear response range from 0.003 to 600 ng mL(-1) with a low detection limit of 0.8 pg mL(-1). The immunosensor showed good specificity, acceptable stability and reproducibility. Satisfactory results were obtained in the determination of CEA in human serum albumin samples. Hence, the proposed ECL immunosensor could become a promising method for tumor marker detection.