▎ 摘 要
The transport physics and performance of a top gate graphene nanoribbon (GNR) on an insulator transistor are studied for both the MOSFET like doped source-drain and the zero-Schottky barrier source-drain contacts. A voltage controlled tunnel barrier is the device transport physics. The doped source-drain contact device has a higher gate capacitance, higher transconductance, higher on/off current ratio and higher on-state current. The higher on-state current results in a lower switching delay of 17 fs, and the higher transconductance results in a higher intrinsic cut-off frequency of 27 THz in the doped source-drain contact device. The gate voltage, beyond the source-channel flat band condition, modulates both the tunnel and the thermal barrier in the doped source-drain contact devices and the tunnel barrier only in the Schottky contact devices. This limits the on-state current of Schottky contact devices.