• 文献标题:   Nitrogen-doped graphene aerogel-supported ruthenium nanocrystals for pH-universal hydrogen evolution reaction
  • 文献类型:   Article
  • 作  者:   DING Y, CAO KW, HE JW, LI FM, HUANG H, CHEN P, CHEN Y
  • 作者关键词:   water electrolysi, graphene aerogel, nitrogen doping, ruthenium nanocrystal, hydrogen evolution reaction
  • 出版物名称:   CHINESE JOURNAL OF CATALYSIS
  • ISSN:   0253-9837 EI 1872-2067
  • 通讯作者地址:  
  • 被引频次:   53
  • DOI:   10.1016/S1872-2067(21)63977
  • 出版年:   2022

▎ 摘  要

The design and synthesis of high-performance and low-cost electrocatalysts for the hydrogen evolution reaction (HER), a key half-reaction in water electrolysis, are essential. Owing to their modest hydrogen adsorption energy, ruthenium (Ru)-based nanomaterials are considered outstanding candidates to replace the expensive platinum (Pt)-based HER electrocatalysts. In this study, we developed an adsorption-pyrolysis method to construct nitrogen (N)-doped graphene aerogel (N-GA)-supported ultrafine Ru nanocrystal (Ru-NC) nanocomposites (Ru-NCs/N-GA). The particle size of the Ru-NCs and the conductivity of the N-GA substrate can be controlled by varying the pyrolysis temperature. Optimal experiments reveal revealed that 10 wt% Ru-NCs/N-GA nanocomposites require overpotentials of only 52 and 36 mV to achieve a current density of 10 mA cm???2 in 1 mol/L HClO4 and 1 mol/L KOH electrolytes for HER, respectively, which is comparable to 20 wt% Pt/C electrocatalyst. Benefiting from the ultrafine size and uniform dispersion of the Ru-NCs, the synergy between Ru and the highly conductive substrate, and the anchoring effect of the N atom, the Ru-NCs/N-GA nanocomposites exhibit excellent activity and durability in the pH-universal HER, thereby opening a new avenue for the production of commercial HER electrocatalysts. Published by Elsevier B.V. All rights reserved.