• 文献标题:   Two-level systems coupled to Graphene plasmons: A Lindblad equation approach
  • 文献类型:   Review
  • 作  者:   ANTAO TVC, PERES NMR
  • 作者关键词:   graphene, lindblad equation, plasmon, twolevel system
  • 出版物名称:   INTERNATIONAL JOURNAL OF MODERN PHYSICS B
  • ISSN:   0217-9792 EI 1793-6578
  • 通讯作者地址:  
  • 被引频次:   2
  • DOI:   10.1142/S0217979221300073
  • 出版年:   2021

▎ 摘  要

In this paper, we review the theory of open quantum systems and macroscopic quantum electrodynamics, providing a self-contained account of many aspects of these two theories. The former is presented in the context of a qubit coupled to a electromagnetic thermal bath, the latter is presented in the context of a quantization scheme for surface-plasmon polaritons (SPPs) in graphene based on Langevin noise currents. This includes a calculation of the dyadic Green's function (in the electrostatic limit) for a Graphene sheet between two semi-infinite linear dielectric media, and its subsequent application to the construction of SPP creation and annihilation operators. We then bring the two fields together and discuss the entanglement of two qubits in the vicinity of a graphene sheet which supports SPPs. The two qubits communicate with each other via the emission and absorption of SPPs. We find that a Schrodinger cat state involving the two qubits can be partially protected from decoherence by taking advantage of the dissipative dynamics in graphene. A comparison is also drawn between the dynamics at zero temperature, obtained via Schrodinger's equation, and at finite temperature, obtained using the Lindblad equation.