▎ 摘 要
Recent experiment has shown that the ABC-stacked trilayer graphene-boron nitride Moire super-lattice at half-filling is a Mott insulator. Based on symmetry analysis and effective band structure calculation, we propose a valley-contrasting chiral tight-binding model with local Coulomb interaction to describe this Moire super-lattice system. By matching the positions of van Hove points in the low-energy effective bands, the valley-contrasting staggered flux per triangle is determined around pi/2. When the valence band is half-filled, the Fermi surfaces are found to be perfectly nested between the two valleys. Such an effect can induce an inter-valley spiral order with a gap in the charge excitations, indicating that the Mott insulating behavior observed in the trilayer graphene-boron nitride Moire super-lattice results predominantly from the inter-valley scattering. (C) 2018 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.