• 文献标题:   Norfloxacin and Bisphenol-A Removal Using Temperature-Switchable Graphene Oxide
  • 文献类型:   Article
  • 作  者:   YAO N, ZHANG XT, YANG Z, YANG WB, TIAN ZQ, ZHANG LM
  • 作者关键词:   graphene oxide, temperatureresponsive polymer, emerging organic contaminant, adsorption, hydrophobic association
  • 出版物名称:   ACS APPLIED MATERIALS INTERFACES
  • ISSN:   1944-8244 EI 1944-8252
  • 通讯作者地址:   Nanjing Normal Univ
  • 被引频次:   3
  • DOI:   10.1021/acsami.8b07233
  • 出版年:   2018

▎ 摘  要

Graphene oxide (GO) is a competitive candidate used for adsorption of emerging organic contaminants (EOCs) from water. To overcome GO's spontaneous aggregation tendency in adsorption and to ease contaminant desorption from the adsorbent for adsorbent regeneration, a modified GO (P-GO), with temperature-switchable hydrophilicity/hydrophobicity, obtained by grafting temperature-responsive poly( N-n-propylacrylamide) was proposed. Two model EOCs, norfloxacin (NOR) and bisphenol A (BPA), with distinct hydrophilicity/hydrophobicity were employed. P-GO showed significant temperature-responsive adsorption behaviors: P-GO was more hydrophilic at a lower temperature and was beneficial for the adsorption of hydrophilic NOR, whereas it turned more hydrophobic at a higher temperature and was preferred for the adsorption of hydrophobic BPA. Compared with GO, P-GO under corresponding optimal conditions had comparable large adsorption amounts for NOR because of an "adsorption site replacement" strategy and notably enhanced adsorption for BPA because of strengthened hydrophobic association. Main interfacial binding interactions were pi-pi electron donor-acceptor effect and H-bonding for NOR adsorption and hydrophobic association and H-bonding for BPA uptake. On the basis of the temperature-responsive adsorption behaviors and studied interfacial interactions, regeneration of the adsorbent at designed temperatures using water (without additional chemicals) as an eluent is realized. This achievement is important for reducing risks of secondary environmental pollution during regeneration and easing further recovery of organic contaminants if needed.