• 文献标题:   Ultrafast growth of nanocrystalline graphene films by quenching and grain-size-dependent strength and bandgap opening
  • 文献类型:   Article
  • 作  者:   ZHAO T, XU C, MA W, LIU ZB, ZHOU TY, LIU Z, FENG S, ZHU MJ, KANG N, SUN DM, CHENG HM, REN WC
  • 作者关键词:  
  • 出版物名称:   NATURE COMMUNICATIONS
  • ISSN:   2041-1723
  • 通讯作者地址:   Chinese Acad Sci
  • 被引频次:   4
  • DOI:   10.1038/s41467-019-12662-z
  • 出版年:   2019

▎ 摘  要

Nanocrystallization is a well-known strategy to dramatically tune the properties of materials; however, the grain-size effect of graphene at the nanometer scale remains unknown experimentally because of the lack of nanocrystalline samples. Here we report an ultrafast growth of graphene films within a few seconds by quenching a hot metal foil in liquid carbon source. Using Pt foil and ethanol as examples, four kinds of nanocrystalline graphene films with average grain size of similar to 3.6, 5.8, 8.0, and 10.3 nm are synthesized. It is found that the effect of grain boundary becomes more pronounced at the nanometer scale. In comparison with pristine graphene, the 3.6 nm-grained film retains high strength (101 GPa) and Young's modulus (576 GPa), whereas the electrical conductivity is declined by over 100 times, showing semiconducting behavior with a bandgap of similar to 50 meV. This liquid-phase precursor quenching method opens possibilities for ultrafast synthesis of typical graphene materials and other two-dimensional nanocrystalline materials.