• 文献标题:   Formation of Nanocrystalline Cobalt Oxide-Decorated Graphene for Secondary Lithium-Air Battery and Its Catalytic Performance in Concentrated Alkaline Solutions
  • 文献类型:   Article
  • 作  者:   PENG SH, LU HC, LUE SJ
  • 作者关键词:   metal oxide nanocatalyst, airbreathing secondary battery, dual electrolyte, electrochemistry, alkaline electrolyte solution
  • 出版物名称:   NANOMATERIALS
  • ISSN:  
  • 通讯作者地址:   Chang Gung Univ
  • 被引频次:   0
  • DOI:   10.3390/nano10061122
  • 出版年:   2020

▎ 摘  要

A potent cathode catalyst of octahedral cobalt oxide (Co3O4) was synthesized onto graphene (GR) nanosheets via a two-step preparation method. The precursor cobalt solution reacted with GR during the initial hydrolysis step to form intermediates. A subsequent hydrothermal reaction promoted Co(3)O(4)crystallinity with a crystalline size of 73 nm, resulting in octahedral particles of 100-300 nm in size. Scanning electron microscopy, Raman spectroscopy, and X-ray diffraction analysis confirmed the successful formation of the Co3O4/GR composite. This catalyst composite was sprayed onto a carbon cloth to form a cathode for the hybrid electrolyte lithium-air battery (HELAB). This catalyst demonstrated improved oxygen reduction and oxygen evolution capabilities. The HELAB containing this catalyst showed a higher discharge voltage and stable charge voltage, resulting in a 34% reduction in overall over-potential compared to that without the Co3O4/GR composite. The use of saturated LiOH in 11.6 M LiCl aqueous electrolyte at the cathode further reduced the over-potential by 0.5 V. It is proposed that the suppressed dissociation of LiOH expedites the charging reaction from un-dissociated LiOH. This Co3O4/GR composite is a promising bi-functional catalyst, suitable as a cathode material for a HELAB operating in high relative humidity and highly alkaline environment.