▎ 摘 要
Atomic nitrogen is formed in the high-temperature shock layer of hypersonic vehicles and contributes to the ablation of their thermal protection systems (TPSs). To gain atomic-level understanding of the ablation of carbon-based TPS, collisions of hyperthermal atomic nitrogen on representative carbon surfaces have recently be investigated using molecular beams. In this work, we report direct dynamics simulations of atomic-nitrogen [N(S-4)] collisions with pristine, defected, and oxidized graphene. Apart from non-reactive scattering of nitrogen atoms, various forms of nitridation of graphene were observed in our simulations. Furthermore, a number of gaseous molecules, including the experimentally observed CN molecule, have been found to desorb as a result of N-atom bombardment. These results provide a foundation for understanding the molecular beam experiment and for modeling the ablation of carbon-based TPSs and for future improvement of their properties. Published under license by AIP Publishing.