▎ 摘 要
In this work, a facile "one-pot" approach for the preparation of composites with tunable electrical conductivity and viscoelastic properties is presented. The effect of reaction conditions, such as reaction time and temperature as well as the structure and concentration of the tertiary amine used as a component of the catalytic complex, on the reduction of graphene oxide was investigated. The reaction conditions were optimized for the simultaneous GO reduction during the synthesis of two types of polymers, poly(methyl methacrylate) (PMMA) and poly(styrene-co-acrylonitrile) (SAN). GO-graft-poly(methyl methacrylate) (GO-g-PMMA) and GO-graft-poly(styrene-co-acrylonitrile) (GO-g-SAN) hybrids with electrical conductivity ranging from 10(-8) to 10(0) S cm(-1) were prepared using selected tertiary amine-based ligands. Finally, the reaction conditions were adapted for the in situ preparation of GO-g-PMMA/PMMA and GO-g-SAN/SAN composites with electrical conductivity ranging from 10(-14) to 10(-4) S cm(-1). The mechanical properties of the synthesized composites were compared with composites prepared from GO and commercial PMMA or SAN.