• 文献标题:   SnSb@carbon nanocable anchored on graphene sheets for sodium ion batteries
  • 文献类型:   Article
  • 作  者:   LI L, SENG KH, LI D, XIA YY, LIU HK, GUO ZP
  • 作者关键词:   snsb, grapheme, coaxial structure, sodium ion batterie
  • 出版物名称:   NANO RESEARCH
  • ISSN:   1998-0124 EI 1998-0000
  • 通讯作者地址:   Univ Wollongong
  • 被引频次:   71
  • DOI:   10.1007/s12274-014-0506-z
  • 出版年:   2014

▎ 摘  要

The development of materials with unique nanostructures is an effective strategy for the improvement of sodium storage in sodium ion batteries to achieve stable cycling performance and good rate capability. In this work, SnSbcore/carbon-shell nanocables directly anchored on graphene sheets (GS) were synthesized by the hydrothermal technique and chemical vapor deposition. The simultaneous carbon coating and the encapsulation of SnSb alloy is effective for alleviating the volume-change problem in sodium ion batteries. After optimizing the electrolyte for SnSb in the sodium ion batteries, the optimized coaxial SnSb/carbon nanocable/GS (SnSb/CNT@GS) nanostructure demonstrated stable cycling capability and rate performance in 1 M NaClO4 with propylene carbonate (PC) + 5% fluoroethylene carbonate (FEC). The SnSb/CNT@GS electrode can retain a capacity of 360 mAh/g for up to 100 cycles, which is 71% of the theoretical capacity. This is higher than in the other three electrolytes tested (1 M NaClO4 in PC, 1 M NaClO4 in PC/FEC (1:1 v/v) and 1 M NaPF6 + PC), and higher than that of the sample without the addition of graphene. The good electrochemical performance can be attributed to the efficient buffering provided by the outer carbon nanocable layer and the graphene inhibiting the agglomeration of SnSb particles, as well as its high conductivity.