▎ 摘 要
A multiscale theoretical approach was used to investigate hydrogen storage in a novel three-dimensional carbon nanostructure. This novel nanoporous material has by design tunable pore sizes and surface areas. Its interaction with hydrogen was studied thoroughly via ab initio and grand canonical Monte Carlo calculations. Our results show that, if this material is doped with lithium cations, it can store up to 41 g H-2/L under ambient conditions, almost reaching the DOE volumetric requirement for mobile applications.