• 文献标题:   An eco-friendly and sustainable support of agave-fibers functionalized with graphene/TiO2:SnO2 for the photocatalytic degradation of the 2,4-D herbicide from the drinking water
  • 文献类型:   Article
  • 作  者:   HERNANDEZDEL PC, OLIVA J, RODRIGUEZGONZALEZ V
  • 作者关键词:   photocatalysi, graphene, tio2, sno2, agave fiber
  • 出版物名称:   JOURNAL OF ENVIRONMENTAL MANAGEMENT
  • ISSN:   0301-4797 EI 1095-8630
  • 通讯作者地址:  
  • 被引频次:   3
  • DOI:   10.1016/j.jenvman.2022.115514 EA JUN 2022
  • 出版年:   2022

▎ 摘  要

In this research, we evaluated the photocatalytic performance of biodegradable composites for the removal of the 2,4-Dichlorophenoxyacetic acid (2,4-D) herbicide. The composite was composed by agave fibers (AgF), graphene-microplates (GM) and titanium dioxide TiO2/SnO2 (TSn) nanoparticles (NPs) and was named TSn + AgF/GM. Both, the TSn NPs and the GM were deposited on the AgF using the Dip-coating method. According to the analysis by X-Ray Diffraction (XRD), the crystalline phase for the TiO2 and SnO2 was anatase and tetragonalrutile, respectively. The Scanning Electron Microscopy (SEM) images demonstrated that the AgF were completely saturated by the GM (which had average dimensions of 15 mu m x 22 mu m) and by conglomerations of TSn NPs with average size of 642 nm. The TSn NPs and the TSn + AgF/GM composite were evaluated for the photocatalytic degradation of the 2,4-D herbicide under ultraviolet-visible (UV-Vis) light and found a maximum degradation of 98.4 and 93.7% (after 4 h) for the TSn NPs and the TSn + AgF/GM composite, respectively. Reuse cycles were also performed and the degradation percentage decreased by 13.1% and by 7.8% (after 3 cycles of reuse) when the TSn NPs and the TSn + AgF/GM composite are employed, respectively. Scavenger experiments were also carried out and found that the oxidizing agents are mainly produced in the order of: center dot OH > O-2(-) > h(+); then, the main oxidizing agents generated during the photocatalytic reaction were the hydroxyl radicals. Thus, the photocatalytic system studied in this work for the degradation of 2,4-D could pave the way for the development of new eco-friendly/floatable photocatalysts, which can be applied in wastewater-treatment plants.