▎ 摘 要
Conveyor fused deposition modelling (CFDM) 3D printing of graphene (GR)/polylactic acid (PLA) composite filament offers a unique capability to manufacture tailorable honeycomb structures which can be designed and optimized for specific applications. Among the various filaments that can be used for 3D printing, PLA, carbon black (CB)/PLA, and GR/PLA filaments were collected and then examined by differential scanning calorimetry (DSC), thermal gravity analysis (TGA), and Raman spectra. A stereolithography (STL) file with a 3D honeycomb structure model was prepared and transformed into a G-code file using a G-code generator. The extrusion conditions for CFDM 3D printing were controlled by infill and print speed. PLA, CB/PLA, and GR/PLA composite honeycomb samples were manufactured by 3D printing based on FDM using PLA, CB/PLA, and GR/PLA filaments. CFDM 3D printed honeycomb samples prepared by PLA, CB/PLA and GR/PLA filament were analyzed for morphology, surface resistance, electrical heating properties. For the 3D printed honeycomb structure sample using CB/PLA and GR/PLA, the optimum condition was set up 230 degrees C and 220 degrees C respectively of the printer temperature, 50 degrees C of bed temperature, and 30 mm/s of printer speed. Surface resistivity of honeycomb structure sample using CB/PLA and GR/PLA is about 299.0 omega/sq and 118.0 omega/sq. The maximum surface temperature of honeycomb structure sample using CB/PLA and GR/PLA is ca. 78.7 degrees C and 143.0 degrees C applied to 25 V.